

Human Factors in the Coming Age of Driverless Vehicle

Jibo He, Ph.D., Associate Professor Department of Psychology Investment Partner, iBeeHub Incubator Jibo.He@Wichita.edu

WICHITA STATE UNIVERSITY

< >

MInbox (340) - drhojibo@gmail ×

WSU VENTURES

Marketing Technology and In ×

-

PUTTING SAFETY FIRST

Everyday wearable application with smartphone integration monitors fatigue and increases driver safety.

LEARN MORE

0

0000000

Ø 北京大学心理学系 Department of Psychology

2003

Psychology

2006

Human computer interaction

2007

distraction

About Jibo He

2010

Visual cognition, eye-tracking, driver

Eye-tracking, statistics

2011

Driver distraction, driver fatigue

user computer wandering factors usability distraction ev driving but used iracti eyeg tracking Visual Psychology cognition S.

About Human Automation Interaction Lab

- Eye-trackers
- Advanced driving simulator
- Advanced flight simulator
- Microsoft HoloLens •
- Smartphones & smartwatches
- Google Glass
- NeuroSky EEG sensors •

Tobii, SMI eye-tracker, and SR Research Eyelink-eye tracker

Advanced Driving Simulator Upgrade Project

Jibo He

Jibo.he@Wichita.edu

Yes, Jibo He Can!!!

108 23 66

Driving Pleasure and Survival Needs

Sheer Driving Pleasure

Driving Pains

Drunk Driving

Drowsy Driving

Driving Difficulty

Distracted Driving

Telescopes Low Vision Driving

Top 10 global causes of liability loss by total value of claims [2011-2016]

19 Human Error

Driving Casualty

23

Defective product/work

22 **Collision/crash**

A robotic vehicle that is designed to travel between destinations without a human

Driverless Vehicle

Emergency Braking Pedestrian Detection **Collision Avoidance** Environment Mapping

Lane Departure Warning

Adaptive Cruise Control

Camera

Short-/Medium-Range Radar

Sensors in Driverless Vehicle

Sensors in Driverless Vehicle

Brands of driverless vehicle

* Chang An * Tesla ✤ Baidu * Google

* Audi * Nissan ✤ BMW * Volvo

✤ Didi **& Uber** * Toyota

Automation levels of driverless vehicles

There are no autonomous features.

LEVEL 3

These cars handle "dynamic driving tasks" but might still need intervention.

tasks" but might still need intervention.

LEVEL 2

These cars would have at least two automated functions.

LEVEL 5

These cars can operate entirely on their own without any driver presence.

their own without any driver presence.

Your PC ran into a problem and needs to restart. We're just collecting some error info, and then we'll restart for you. (45% complete)

If you'd like to know more, you can search online later for this error: DRIVER_IRQL_NOT_LESS_OR_EQUAL

to err is machine "

To err is machine,e.g. driverless vehicle

Tesla driver killed in first fatal crash using Autopilot

To err is machine, e.g. driverless vehicle

Google's Self-Driving Car Caused Its First Crash

E a a

Situational Awareness

Computer Vision Algorithms lack Situational Awareness (Level 3): project the future actions of the elements in the environment

Human Factors Issues for Driverless Vehicles

Trust & Complacency

Insurance and Legal Issues

Federal Automated Vehicles Policy Who must carry motor vehicle insurance? *** How to allocate liability when a crash occurs ?**

> Insurance Information Institute Liability laws might evolve to ensure autonomous vehicle technology advances are not brought to a halt.

Customers Acceptance

> An Insurance Information Institute Pulse survey (2016)

vehicle."

* 50 percent: "manufacturer should bear responsibility for an accident"

only 25 percent: "willing to pay more for a driverless car to cover the manufacturer's liability in case of an accident."

* 55 percent of consumers: "would not ride in an autonomous

Security and Privacy

"The hackers can take control of the brakes, engine or other components of a person's car remotely."

The Guardian (2016)

ATTACKING AUTONOMOUS VEHICLE SENSORS

9

Human Sensing Technologies

9

Human Sensing Technologies

\checkmark Face recognition \checkmark Head tracking

WICHITA STATE UNIVERSITY

\checkmark Gaze tracking \checkmark Lip reading

A robotic vehicle that is designed to travel between destinations by integrati uman factors & techno

Take-Home Message: Driverless Vehicle

devices: A feasibility study of the proximity sensor. *Applied Ergonomics*.

- smartphones. *Journal of Ergonomics*, 3(03), 1-7.
- \succ Vehicle Design, Bolton Landing New York.
- \triangleright **Patent No. 8,876,535.** Washington, DC: U.S. Patent and Trademark Office.
- journal of human-computer studies, 65(3), 192-205.

References

He, J., Choi, W., Yang, Y., Lu, J., Wu, X., & Peng, K. (2017). Detection of driver drowsiness using wearable

He, J., Roberson, S., Fields, B., Peng, J., Cielocha, S., & Coltea, J. (2013). Fatigue detection using

Ren, Z., Wang, C., & He, J. (2013, June). Vehicle detection using Android smartphones. In *Proceedings of* the Seventh International Driving Symposium on Human Factors in Driver Assessment, Training, and

Fields, B. M., He, J., Nepomuceno, J. A., Roberson, S., Plummer, B. A., Houdek, K. C., & Jain, N. (2014). *U.S.*

Seppelt, B. D., & Lee, J. D. (2007). Making adaptive cruise control (ACC) limits visible. International

